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I. Basic Boussinesq Convection®
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Astronomy Department, Columbia University

Convection occurs somewhere in most stars, yet our lack of understanding
of convection has not seemed a major impediment to progress in stellar
structure in recent years. In part this is true because convection often
achieves the idealized adiabatic limit that is expected in convective cores of
stars. It has also been true that uncertainties in the other physical processes
in stars have been reduced considerably, and this has permitted a better
empirical determination of the arbitrary parameters used in stellar convec-
tion theory. Of course, there is always the possibility that things are not as
satisfactory as one thinks. But if we take the optimistic view that present
convective models are qualitatively reasonable, what can one expect of an
improved theory? One desirable feature would be the prediction of convective
transfer with, in addition, some reasonable estimate of the accuracy of the
prediction. For this, a minimal but inadequate test is found in laboratory
convection for which some quantitative data are available. Thus, a principal
goal of stellar convection theory should be the development of a reasonable
deductive theory whose reasonability can be minimally established by
laboratory tests.

Having obtained a theory at this level we would next be interested in
finer details that characterize stellar convection. That is, we would like to
be able to be quantitative about the time dependence and scales of the con-
vection motion and to compare these with solar observations; we would
like to know how far convection may penetrate beyond the regions of in-
stability and by large-scale mixing remove chemical inhomogeneities; we
would be interested in the precise temperature variations at the tops of
convective envelopes to have better input for model atmospheres. And
these are only a sample of some of the questions that one would hope to
answer at this level of difficulty.

There is, in addition, a series of dynamical questions which raise problems
about the interaction of convection with other processes of stellar fluid
dynamics. These bring in new instabilities and are probably the most in-
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 Part 11, Special Effects, will appear in Volume 10 (1972) and Part III, Stellar
Convection, will appear in Volume 11 (1973).
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teresting problems in stellar convection theory at present. Thus we would
like to know when convection can stabilize or destabilize pulsation; we would
like to understand the role of convection in the rotational history of the Sun;
we would like, even in a primitive example, to compute the dynamo effect
of rotation and convection from first principles.

Before we can proceed to a discussion of what is known about these
various processes, we need to have an outline of the basic theoretical tech-
niques of modern convection theory, some of which involve prodigious cal-
culations. For the most part, these techniques have been developed and
tested on the basic problem of convection in a thin-plane layer of fluid. Ac-
cordingly, Part I of this review is devoted to the problem of convective
transfer in the laboratory situation. It should be stressed, however, that the
equations and approximations used are the same as these now used in stellar
structure calculations with a common goal—to predict the march of tem-
perature through the convective fluid. It will be seen, for example, that the
mixing-length theory as used in stars is not as complete as that now dis-
cussed for laboratory convection. Other more difficult, but hopefully more
adequate, approaches will be outlined. However, the astrophysicist inter-
ested in a simple recipe for calculating stellar models will be disappointed to
find that instead, the stellar structure calculation in these approaches con-
stitutes a subroutine in the convection program, and not vice versa. There
seems no way around this for the present.

Having outlined these various approaches here, we shall return in the
next volume of these Reviews to their application to the problem of stellar
convection. In Part II the special problems of stellar convection such as
large density variation, overshooting, rotation, and radiative transfer will
be considered in the context of pure convection theory. Itisin these domains
that the more involved methods, especially those of Section 8, can be used
to advantage, though one would not wish to pursue them without first ex-
amining their suitability for the basic problem of convective transfer. Part
III is then to be devoted to actual stellar convection and the understanding
of it that can be drawn from the discussion of Part II.

It is hardly necessary to add that even the limited subject matter of
Part I cannot be treated exhaustively in the space available here. Hence,
the discussion is focused on approaches that seem to have a direct bearing
on the problems of stellar convection. Since the literature is vast, no attempt
is made to cover all the contributions from meteorology (Sutton 1953,
Priestley 1959), engineering (Prandtl 1952) and other fields where convec-
tion plays an important role. Also, reference is often made to papers which
adequately summarize or synthesize previous work, and fundamental papers
covered in such discussions are not necessarily cited. Particularly helpful is
the thoroughness of existing treatments of linear theory (Chandrasekhar
1961), and the existence of a recent general review of the subject (Brindley
1967), in addition to some less complete ones by the present author (Spiegel
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1966, 1967). An interesting discussion of the overall spectral dynamics of
convection is also available (Platzman 1965).

1. Tue EqQuaTtionNs oF CONVECTION

1.1 The anelastic and Boussinesq approximations.—Though it would be
out of place here to go into mathematical details of convection theory, it is
necessary to discuss the basic equations, since much of the language of the
subject stems from them. However, it does not pay to write down the full
equations, since no attempt seems to have been made to solve them, except
in linear theory. It is more usual to begin at the outset by introducing ap-
proximations.

The approximation that seems most appropriate for astrophysical con-
vection is the anelastic approximation familiar to meteorologists (Ogura &
Phillips 1962, Gough 1969). The basic idea of this approximation is to filter
out high-frequency phenomena such as sound waves since these are thought
to be unimportant for transport processes. This approximation is not really
valid in the outer layer of convective envelopes or red giants, for example,
since the Mach numbers of the convective motions can become appreciable
there; but since even the anelastic problem has not been solved for that
case, little can be said of this difficulty.

In studying laboratory convection, a further approximation is permitted,
namely that the vertical extent of the fluid is much less than its density or
pressure scale heights (Spiegel & Veronis 1960). This does not mean that the
fluid is incompressible, but it does imply that density variations are very
small and permits other such simplifications (Mihaljan 1962, Malkus
1964). This approximation combined with the anelastic approximation
leads to the so-called Boussinesq approximation which is used in studies of
laboratory convection, meteorology [sometimes with other justifications
(Dutton & Fichtl 1969)], and even (implicitly) in most calculations of stel-
lar convection. It often is further assumed that material properties such as
viscosity and conductivity are insensitive to temperature; that is not an
essential part of the Boussinesq approximation, but this ‘‘strong” form of the
approximation is adequate for many experiments. Further, the principal
configuration studied is that of a plane-parallel layer of fluid oriented hor-
izontally in a uniform gravitational field, and that example will serve here.

1.2 Mean quantities.—In a convecting fluid, and especially a turbulent
one, it is convenient to separate the mean and fluctuating parts of variables
such as pressure and temperature. The means should ideally be ensemble
averages, but it is computationally more convenient to use means over
horizontal surfaces. Thus, one writes for the temperature in the plane-
parallel case,

T(x,t) = T(z, t) + 6, t) 1.1
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where z is the vertical coordinate and §=0. In the idealized problem of Part
I,1=0 where u is the velocity.

When horizontal means are taken of the Boussinesq equations there
result (Spiegel 1967)

J _
— @+ ) =—g 1.2
dz
and
J _ 0 — 92T
— T4+ —wl =x— 1.3
ot 9z 932

Here p is the density (assumed constant), p is the pressure, g is the accelera-
tion of gravity, w is the vertical component of u, and « is the thermal dif-
fusivity (molecular or radiative). These two equations are the Boussinesq-
versions of two of the basic equations of stellar structure theory. The pu? is
the turbulent pressure and wf is the convective flux. If these two terms
could be simply evaluated in terms of mean quantities, the convective dif-
ficulties of stellar structure theory would be essentially overcome, since a
reasonably simple set of equations would result. No such possibility is
readily found from the equations for u and 6 (which will be displayed below).
Indeed, it is clear from looking at the full equations that static structure
equations like 1.2 and 1.3 make up one of the least difficult parts of the
convection problem.

1.3 The Boussinesq equations.—In writing the equations of motion it is
advantageous to use natural units appropriate to the problem. Thus we take
the vertical extent of the fluid d as the unit of length, d?/k as the unit of time,
where « is the thermal diffusivity, p as unit of density, and AT —gd/C, as
the unit of temperature, where AT is an imposed temperature difference
across the fluid, g is the acceleration of gravity, and Cj, is the specific heat at
constant pressure. The term gd/C, is the adiabatic temperature change
across the layer and meteorologists would call AT—gd/C, the change in
potential temperature (Brunt 1939), but astrophysicists prefer to work with
entropy.

In natural units, the equations for the fluctuating quantities are (Malkus
& Veronis 1958)

1 /du ~
_<§+u.Vu) = —Vw + Rék+Vau 1.4

[

90 oT —
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ot 9z



Annu. Rev. Astron. Astrophys. 1971.9:323-352. Downloaded from www.annualreviews.org
Access provided by University of California- San Diego on 02/03/17. For personal use only.

CONVECTION IN STARS 327
vau=0 1.6

where k is a unit vector in the vertical, w = (p—p)/p—u?,

P d
r=% (AT—E—), ¢ =v/k 1.7

Ky »

are known as the Rayleigh and Prandtl numbers, and « is the coefficient of
thermal expansion.

These equations are completed with the addition of 1.2 and 1.3, but the
former is not really essential for the Boussinesq case. Moreover, 1.3 can be
simplified by adopting the widely held belief that under stationary external
conditions mean quantities are also stationary, at least in turbulent con-
vection. In that case, 1.3 can be written, in natural units, as

— T
w—— =N 1.8
9z

where the Nusselt number N is the (constant) sum of the convective and
conductive heat fluxes. If the Boussinesq approximation had not been made,
additional terms representing acoustic flux and transport due to viscous
stresses would be required, though such effects are usually ignored in stellar
convection as well.

To these equations must be added boundary conditions (Chandrasekhar
1961). In experimental studies the attempt is often made to fix the boundary
temperatures, hence § =0 on the boundaries. On rigid boundaries, u=0, and
on free boundaries w=0 and the tangential stresses vanish. The conditions
appropriate to free boundaries are often used in theoretical work even when
they do not apply, since they are easier to work with.

2. STABILITY THEORY

Convection as we are considering it here normally arises as an instability
which grows on a previously static configuration. In the simplest case, where
a perturbation of infinitesimal amplitude does not suffer thermal diffusion
or viscous effects, the question of stability can be decided simply. A parcel
of fluid displaced vertically and adiabatically suffers a change in energy by
an amount mC,dT +mgdz where m is the mass of the parcel. If this change
is negative, that is if

aT
—< ~g/C, 2.1
dz

we can expect instability. This criterion, called the Schwarzschild criterion,
can be obtained by more rigorous methods (Lebovitz 1966, Kaniel & Kovitz
1967).
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When dissipative effects on the perturbation are included, the problem
of stability is more difficult but precise treatments are available (Chandra-
sekhar 1961). An infinitesimal perturbation is applied to a given static con-
figuration. For the initial times at least, the equations of motion are then
linear, with constant coefficients in the strong Boussinesq approximation,
and they are then separable. In the plane-parallel case solutions of the form

w(x, 1) = f(x, y)e"W(2) 2.2
for w, are found with similar forms for the other variables. Here
a2 92
Vif = —+——> = —a’ 2.3
tf (ax"’ dy? ! /

and 7 and a are separation constants representing the growth rate and
horizontal wavenumber of the perturbation. Solutions of the resulting
eigenvalue problem can be found giving 9 as a function of R, o, and a. If for
given R and o there exist solutions with Re(n) >0 for some a, the solution
is unstable. If for Re(n) 20 we have Im(n) %<0 the instability is called over-
stability or vibrational instability. If Im(q) =0 whenever Re(n) >0, the
principle of the exchange of stabilities is said to hold. For the linearized
form of 1.4~1.6 this principle has been established. If we set =0 in the
separated linear equations they give a relation defining the condition for
marginal stability. As can be seen by inspection, ¢ drops out of these equa-
tions and we are left with a relation between R and a, having the properties
R— « for a—0 and a— . Thus R has a minimum value R, at a particular
a =a,, which implies that for R> R, thereis a band of a for which there exist
7>0. We conclude that for R> R, convection occurs. For rigid boundaries
the values R,=1708 and e,=3.1 are found. A physical discussion of these
results suggests that the Rayleigh number may be interpreted as the ratio
of buoyancy force to viscous force on the perturbation (Spiegel 1960).

Now stability is much harder to establish than instability, since it is not
always possible to test all possible perturbations. For the present elementary
example of convection it has also been shown that for R> R, there are no
positive 9, but this is not always the case in more complex problems, and
overstability may arise if stabilizing forces work against the convection.
The overstability then may occur at R< R, in the sense that R, is defined
here.

Further, some of the more complicated configurations, though stable in
the sense used here, may be metastable. That is, if perturbations of suf-
ficient amplitude are introduced, the system does not return to its initial
configuration. In fluid dynamics a metastable system is said to exhibit finite
amplitudeinstability. Systems that exhibit overstability often are metastable
as well and several examples will arise in Part II. ‘

These various possibilities are discussed here to make clear that the
example we are considering is special in that instability occurs only as ex-
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ponential growth when R> R, (Sani 1964). But it should also be stressed
that when the fluid is unstable there is in general an infinitude of stable
modes lying in a continuous band of horizontal wavenumber a. A further
degeneracy is that associated with the various possible f’s that satisfy 2.2
(Bisshopp 1960).

3. ExpErRmMENTAL RESULTS

Most of Part I of this review consists of discussion of various attempts
to understand Boussinesq convection and in particular to find how N de-
pends on R and ¢. Some astronomers do not consider that this topic is neces-
sarily relevant to stars since the Boussinesq approximation does not hold
in stars. However, as noted in Section 1, the Boussinesq equations are a
limiting case of the equations governing stellar convection. Thus, any
scheme for solving the equations of stellar convection should also work in the
Boussinesq approximation or be subject to grave doubts. Whether a method
does work in this limit can be tested only by experiment (good numerical
experiments may have to suffice) over as wide a range of parameters as pos-
sible. Of course, such checks do not by any means guarantee the validity of
a stellar convection theory, but they consitute a basic and fairly exacting
requirement. Moreover, as we shall see in Section 8, the mixing-length
theory now used for stars is a Boussinesq theory.

The onset of convective motions at a critical value of R is well estab-
lished; the measured critical value is usually within 3% of that given by
stability theory or better (Thompson & Sogin 1966) and, as theory predicts,
R, is independent of ¢. For R just above R,, steady cellular motion is ob-
served for 62>.7 andif enough care is taken, the motion issteady and occurs
in two-dimensional patterns called rolls. The widely quoted remark that
hexagonal patterns occur in steady convection is not borne out by modern
experiments, except under special circumstances, as when the fluid has
properties which are temperature dependent and the strong Boussinesq
approximation is not valid (Tippleskirch 1956). The wavenumber of the
rolls decreases as R increases (Koschmieder 1966, 1969, Krishnamurti 1970)
with a rate which depends on ¢ but for which no simple experimental rela-
tion has as yet been given; this behavior has been attributed to the side
boundaries (Davis 1968), but recent numerical experiments without side-
walls show this behavior (Lipps & Somerville 1971). The pattern of the
motion changes when R is raised above 22,600 (for ¢ >1) and becomes three-
dimensional. The preferred form then seems rectangular, and probably con-
sists of crossed rolls (Busse 1970, Busse & Whitehead 1971). Such steady
patterns persist to Rayleigh numbers ~5X10¢ when the motion becomes
time dependent, but periodic. Finally at higher values of R(> 10%) the motion
becomes aperiodic, and with even higher R it probably becomes turbulent if
o is not too large. The various transitions in the nature of the flow are cur-
rently the object of intense interest (Krishnamurti 1970, Willis & Deardorff
1967a, b, c; Chen & Whitehead 1968).
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These results have been obtained for ¢21. For ¢<1 the data are too
sparse to permit any real conclusions but the various transitions appear to
occur at rather reduced values of R (Krishnamurti 1970). (In laboratory
fluids typical values of ¢ are: for silicone oils>>1, for water=7, for air=.7,
for mercury=.025, for liquid sodium =.005.) What is remarkable is the
marked change in behavior that occurs in the neighborhood of ¢ =1. In par-
ticular for air, transition to time-dependent convection already occurs at
R=5X103, before the transition to three-dimensional motion (Willis &
Deardorff 1970). For mercury, steady motion is not found at all (Rossby
1969).

The kind of experiment that seems easiest to use in checking astrophysi-
cally oriented theories is the measurement of the heat transfer, or equiv-
alently the Nusselt number, for different values of R and o. Of course, the
R and ¢ typical for stellar convection arc not really accessible experimen-
tally; in the Sun, for example, R is about 102 to 10* (depending on whether
one takes d as a scale height or the depth of the convective zone and on how
one chooses the other parameters) and c~10~? because the thermal diffusion
is radiative (Ledoux, Schwarzschild & Spiegel 1961). Nevertheless, one
should try to push to the highest possible R and the lowest possible ¢ ex-
perimentally to provide data for testing theories as stringently as possible.
At present, the data are inadequate to really discriminate among various
theories, but let us consider what information is available.

In general, the measured heat fluxes through a convective layer are
steady in time. Thus the Nusselt number defined in 1.8 is a constant and one
writes

AT
J=K~d—N(R,o') 3.1

where J is the heat flux divided by pC,. Since the only parameters in the
equations are R and o, the assumption that N depends only on them is
quite rcasonable, though any failure of the theoretical boundary conditions
to match the actual ones and any deviations from the strong Boussinesq
approximations may spoil this simple functional form.

For RLR,, N=1, since convection does not occur. (Exceptions may
arise when the fluid is metastable for R <R,.) The slope of the curve of N
vs R (for fixed o) breaks from N=1at R=R, and N begins to increase with
R (e.g. Rossby 1969). A remarkable feature of the experiments is that N is
only a piecewise smooth function of R, and a series of breaks in the N-R
curves are observed (Malkus 1954b, Krishnamurti 1970, Willis & Deardorff
1967b). The transitions are discontinuities in dN/dR like the one which
signals the onset of convection, but the relative jumps are increasingly small
as R increases. No transitions have been reported for R>5X108. One sug-
gested explanation of the transitions is that they mark the onset of new
modes of motion (Malkus 1954a) which become unstable in the convectively
altered conditions of fluid. Another possibility is that some of the transitions
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represent the occurrence of new interactions among the already existing
modes.

Most attempts to describe the measurements of N are based on the in-
terpolation formula

N = AR’o* 3.2

and experimentalists quote measured values for 4, 7, and s. Although the
quoted uncertainties in several experiments are reasonable, there are some
uncomfortably large differences among values given by different experi-
mentalists in 4, 7, and s, and, less often, in the actual values of N itself. Part
of the trouble in the experiments is that heat leaks out of the sides of the
apparatus and the correction for this is uncertain. Another experimental
difficulty is that to raise R and maintain the strong Boussinesq approxima-
tion one must raise d. To keep the same aspect ratio one must then increase
the horizontal dimension of the apparatus. The result is a large volume of
fluid which is thermally sluggish; such systems take long times to come to
equilibrium and are hard to maintain at given boundary temperatures.

Yet another problem relates to data analysis: different workers fit 3.2
to the data in different domains of R, and if » has a weak R dependence,
discrepancies are inevitable. Of course, if » depends on R this may imply that
3.2 is inadequate, but there are theoretical approaches suggesting that 3.2
works well in certain well-defined domains of R. If data which spread over
more than one of these domains are fitted to 3.2 the results may be mislead-
ing. A careful analysis of these pointsislacking.

Given these uncertainties we may note some trends in the data. The
general impression is that above R~5 X 105, for 0> 1, there appears a marked
but continuous increase in the upward variation of N with R. No data for
R>3X10° seem available and for data in the range 5X10% to 3 X10? the
reported values of r range from 0.200 to 0.325 with quoted probable errors
+.005 (Goldstein & Chu 1966, O’Toole & Silveston 1961, Rossby 1969,
Sommerscales & Gazda 1969). The values of 4 associated with these ex-
tremes are from about 0.2 to 0.08. The most reliable estimates for 7 seem to
be 0.30-0.33.

These differences may partly be due to Prandtl number dependence,
since the value r=.283 was found in silicone oil (6~20) (Sommerscales &
Gazda 1969) and .325 in acetone (¢ =3.7) (Malkus 1954a). Other data seem
consistent with this possibility: for example in one experiment (Rossby
1969) r =.30%..005 and 4 =.13 were found for water (¢ =7) using data down
to R=4X10% However, limited attempts to find s suggest that it is small
for 0 21 (O’Toole & Silveston 1961), hence one picture that might be con-
sidered for ¢ >1 is that s~0 but 4 and 7 depend on ¢ in some transcendental
way. An alternative interpretation is that the domain of R in which 3.2is a
good representation depends on ¢ and the apparent variation of 4 and 7
with ¢ is a result of fitting 3.2 to the data in inappropriate domains. This
possibility is also implied by data for R<5X10° which give lower values of
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r (.25~.28) (Rossby 1969), and it may be true that the inclusion of data from
lower values of R may depress r. A conclusion widely drawn from these data
is that when R becomes large enough, N« R!3; this is in keeping with an
older suggestion that for RS5X105, N« RY4 and for R>105, N« Rl
(Jakob 1946). The modern data do not permit such a simple picture in de-
tail, but support it qualitatively.

For o <1, it appears that N drops with ¢ more discernibly than at higher
o. Data on this point areavailable only for air (¢=.7) and mercury (¢ =.025)
and a definitive statement on the value of s or on possible ¢ dependence of
N or r cannot yet be made.

The experimental information about N thus seems uncertain in all re-
spects. Even the most recent measurements of N differ between experimen-
talists by 109 or more at the same R and ¢. This level of uncertainty is
far greater than is found in calorific measurements in modern physics and
there is a definite need to increase the quantity and accuracy of data on con-
vective heat transport. This would seem a useful subject to include in pro-
grams of laboratory astrophysics.

Another kind of measurement which has been made in some detail is of
T(2) (Goldstein 1964; Rossby 1969, Sommerscales & Gazda 1969, Thomas
& Townsend 1957, Townsend 1959, Willis & Deardorff 1967c). At large R
itis found qualitatively that T is nearly constant away from the boundaries;
near the boundaries T varies rapidly with z. (A variation in T~gd/C,
would be hard to detect in the laboratory.) From 1.8 and the boundary
conditions, it is clear that —87/dz= N at the boundaries, simply because
the convective flux vanishes there. But, as to further details about T, dif-
ferent experimentalists do not agree. Some results indicate that T is not
symmetric about the midplane of the layer but others do not. The equations
are invariant to reflection through the midplane but this does not neces-
sarily imply that T is symmetric, since solutions may occur in asymmetric
pairs. The different results may have to do with variations in experimental
setup, non-Boussinesq effects, different measuring techniques (which mix
some of f into T), different averaging times, and differing states of motion.

An interesting feature found in the experiments is that 7 is not always
monotonic. In particular, there are often bumps in 7 just inside one or both
of the thermal boundary layers (Sommerscales & Gazda 1969). These bumps
are not universally accepted, but their existence now seems quite likely.

Other aspects of the motion, such as 6%, are measured and other various
external effects, such as rotation, have been studied. Many of these will be
discussed in Part II.

4. CALCULATIONS FOR MILDLY SUPERCRITICAL R

If R is just above the critical value R, for the onset of convection, there
are straightforward analytical and numerical techniques for finding solutions
of the basic equations (Joseph 1966, Kuo 1959, Kuo & Platzman 1961,
Malkus & Veronis 1958, Schliiter, Lortz & Busse 1965, Segel 1966, Stuart
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1958). Though this topic (known as finite amplitude theory) is the most
active and successful branch of convection theory, it is not directly helpful
to astrophysicists because in stars R>>R; in general. Nevertheless, even in
discussing what happens at high R, solutions at low R may give a qualitative
lead, and a brief outline of the topicisin order here. The remaining sections
on theories will then be devoted to large R.

The usual analytic technique often used when R— R, is smallis a version
of degenerate perturbation theory. The basic assumption is that for R
slightly above R. the motions will develop only small amplitude and a per-
turbation expansion in amplitude is made. Thus one writes u=eu,+€1,
+..., 8=eby+e,+. .., where u, and 6, are normalized functions and
the amplitude € is assumed small. Though in convection problems it is
usually assumed that R is prescribed, it is not known in advance which
value of R will produce a particular amplitude. It is convenient therefore
to consider € as given and to find the R required to produce it; thus R can
be thought of as a function of ¢ and we can write R=Ro+eR;+. . ., with
the understanding that this relation can later be inverted.

The leading terms in the expansion give the linear equations of stability
theory. These are degenerate since an infinity of choices of the wavenumber
a and the horizontal planform f can be made (cf Equation 2.3). The problem
is usually restricted by choosing the solution at this stage to be one of the
marginally stable solutions of linear theory, though recent work has been
directed at time-dependent cases (Matkowsky 1970). Having made this
choice one goes on to higher orders using known techniques of perturbation
theory to suppress resonances. The expansions have been carried to high
order, and are convergent (Lortz 1961); solutions good to R~10R, or more
are now routinely computable.

In the expansions carried out thus far, the linear solution which is per-
turbed is taken to have a single, fixed horizontal wavenumber ¢ and fixed
planform. Since this linear solution is marginally stable, Ry is the value of
R that produces marginal stability. If Ry were much greater than R., there
would exist values of ¢ corresponding to highly unstable modes at R= Ry,
and these would grow to large amplitude and overwhelm the solution studied.
Hence, @ must be selected so that Ry is near to R,. In the case of the strong
Boussinesq approximation, one finds Ry =0, thus ex (R—R.)!/2, which iden-
tifies the perturbation parameter ¢ in terms of the usual known quantities.

Solutions for a variety of planforms having been found, the question
arises which is preferred in nature. To answer this, the stability of the solu-
tions has been studied by the same techniques used to find them. The work
is most complete for the case o— = (Busse 1967a). In that limit the only
known stable solutions are the two-dimensional rolls in a finite band of a,
and even these become unstable at R=22,600. This instability represents
excellent agreement with experiments which show that the motions do
become three-dimensional at a value of R close to 22,600, but the theory
does not predict the wavenumbers of the observed rolls. Also the experi-
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ments show the existence of steady three-dimensional motion for R>22,000
and a challenge to the theory is to find a corresponding stable three-dimen-
sional nonlinear solution. The observed cells have a rectangular appearance
but theoretical rectangular planforms do not seem to be directly related to
observed cells (Stuart 1964) and the motion probably consists of two inter-
acting modes (Busse 1970, Busse & Whitehead 1971).

5. DIMENSIONAL ARGUMENTS

A powerful way to test ideas about convective transfer is to combine
them with dimensional analysis to obtain the dependence of N on R and of
T on z. There are two simple, but divergent, arguments about the form N
should take, and they are worth outlining here.

The first argument stems from the observation that in highly developed
convection at large R, T follows the adiabatic gradient over the bulk of the
fluid. At the boundaries, according to 1.8, 87/dz= — N, where N is a rather
large number. For the case of fixed boundary temperatures, 7 must there-
fore change by an amount (AT —gd/C,) in the thermal boundary layers
near the walls. The total thickness of the layers is then ~d/N. We may
conclude that the ability to conduct heat into the main body of the fluid
from the boundary layers is the limiting factor in fixing the heat transport
and thus the structure of the boundary layer fixes N.

If this is true, what is the effect of changing d? One line of argument is
that for highly active convection, a change in d should not affect the heat
flux J, since it would not modify the boundary layers but merely increase
the size of the intervening adiabatic region (Priestley 1954). Application
of this argument to 1.7, 3.1, and 3.2 gives

N = Ag*RV/3 541

which is not incompatible with experiments at their present level of
accuracy.

No information on Prandtl number dependence is provided by these
arguments. But in stellar cases, where ¢ «1, astrophysicists generally agree
that the heat flux should not depend on viscosity, which implies that s=7
in 3.2 when s« 1, i.e. N=N(Rqa). There is no experimental evidence directly
supporting this conjecture except for the observed decrease of N with o.
Other theoretical arguments to be mentioned later also support this.

The other dimensional argument for the dependence of N or R comes
from the formulation of methods used in stellar structure in the language
oflaboratory convection (Spiegel 1971a). Convectionin stellar cores is treated
as if the convective cores were completely adiabatic with no boundary or
transition layers intervening between the convective regions and the radia-
tive envelopes. The neglect of such layers implies that for the convective
cores no uncertainty exists in the choice of the correct adiabat. It also as-
sumes that whatever the luminosity of the model, the convective flux re-
quired will be carried without the limitation implied by the existence of a
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boundary layer with dominant conductive transport. Of course, stellar
models are less constrained than laboratory models, since their dimensions
are adjustable; nevertheless such physical requirements placed on the
models are exacting and it is of interest to see what they imply. Thisis simple
to do; if the convective zone is purely adiabatic the heat flux must be in-
dependent of thermal conductivity. This, taken with the previous conclusion
that N= N(Ro) for low o, gives us

N = A(Ro)!? 5.2

if we demand that Equations 3.1 and 3.2 imply that J is independent of &
and ».

The difference between 5.1 and 5.2 (even with s=1/3 in 5.1) is quite
striking and its resolution is important to the theory. One possibility is that
the stellar arguments should not be applied to the laboratory configuration.
If that is true, then an important point of contact is lost between the two
cases. However, other lincs of argument which permit us to resolve the dis-
crepancy between 5.1 and 5.2 will be given below. What is suggested by
these arguments is that at sufficiently high R, turbulent breakdown of the
thermal boundary layer occurs and causes a transition from 5.1 to 5.2. No
such transition has been detected experimentally, but this is presumably
explained by the limitation of the experiments to what in stellar terms are
modest Rayleigh numbers (R~10?%). The need to confirm (or deny) 5.2,
which is intimately connected with basic ideas of stellar structure theory,
poses a great challenge to the experimentalist.

Apart from these results, there have been attempts to discuss the struc-
ture of convective turbulence on the basis of similarity arguments (Zel’do-
vich 1932, Priestley 1959). Conclusions drawn about T(z) in this way do
not seem to agree well with experiment (Townsend 1966).

6. BounDs ON THE HEAT TRANSPORT

Integration of 1.8 over z leads to the expression
N =1+ (w) 6.1

where the angular brackets denote a volume average. We may then apply
the calculus of variations to this functional expression to place bounds on
N which, if they are stringent enough, may be a useful guide in selecting
among various theoretical results. The value of such bounds will evidently
depend on the constraints added to the variational problem.

One set of constraints that has been used are the so-called power integrals
(Malkus 1954b, Sorokin 1957, Chandrasekhar 1961). These are obtained by
scalar multiplication of 1.4 by u and of 1.5 by 6 followed by averaging over
the fluid volume. If mean quantities are steady there result

R{w) = {| vu|2) 6.2
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<(%+§p>wo>= - (Vo[ 6.3

The first of these expressions balances the rate of buoyant input of energy
against the rate of viscous destruction; the second can be similarly thought
of in terms of entropy generation. Neither of these conditions involves the
Prandtl number.

Subject to 6.2 and 6.3 as constraints, the expression 6.1 for N can be
maximized (Howard 1963) and it has been shown that

and

.NsﬁRl/z
8

This bound shows an intriguing similarity in R-dependence to 5.2, but for
o X1 itis much higher than 5.2. Attempts to further tighten this bound by
the addition of 1.6 as a constraint (Busse 1969) have only modified the nu-
merical coefficient in front of R!

equations that then result are probably better representations of the actual
flow.

Another bound has been found by replacing the constraint 6.2 by 1.4 in
the limit ¢— and retaining 6.3 and 1.6 (Chan 1971). This gives N £.325
RY/3 and suggests that for large enough ¢, 5.2 cannot be correct. Thus, if as
demanded by the astrophysical arguments, 5.2 holdsfor 0 «1, at fixed, large
R, N should increase with increasing ¢. At some unknown finite value of o,
N(o) should reach a maximum, O(R"?), and then decrease with increasing ¢
to an asymptotic value <.325 RY3,

It seems technically feasible to derive similar bounds (though not with
the same rigor) for astrophysical (non-Boussinesq) circumstances. However,
the effort does not yet seem warranted. What is needed more is improvement
of the bounds at low values of o. Bounds for this case have been estimated
by physical arguments (Spiegel 1971a), which are really dimensional, and
which agree with 5.2. Analogous rigorous bounds have not been found, pos-
sibly for want of effort. However, there is another conceivable limitation on
the closeness with which the bounds may approach the actual luxes.

Suppose that the equations admit solutions to which correspond inor-
dinately large heat fluxes, but that these solutions are unstable. Then it
could happen that fluxes found in practice would be much lower than for
these solutions but that rigorous mathematical bounds would not be. This
difficulty might be circumvented by the use of ensemble means over many
solutions or by an appropriate constraint; but the problem would be difficult.
Such knotty problems notwithstanding, the establishment of further bounds
would be helpful, especially on other quantities besides flux, such as the po-
tential energy, or kinetic energy, of the fluid. Other less obvious quantities
have been considered too (Busse 1967b).
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7. Two-DIMENSIONAL SOLUTIONS

Naturally, one might try to solve the equations numerically, but even
with the largest machines, complex flows in three dimensions have not been
successfully treated except for R not much larger than R.. In this region of
low R (<10 R;) the three-dimensional time-dependent solutions evolve
slowly to two-dimensional solutions, in confirmation of laboratory results
(Chorin 1968). This does not mean that three-dimensional numerical cal-
culations are not useful at low R; it turns out that if a two-dimensional flow
wishes to adjust its horizontal scale, it does so through the action of three-
dimensional perturbations (Lipps & Somerville 1971).

However, if the flow is two-dimensional, the Boussinesq equations can
now be fairly routinely solved for R up to about 10% (Deardorff 1964, Fromm
1965, Plows 1968, Schneck & Veronis 1967, Somerville 1970, Veronis 1966),
and no doubt these results can be pushed to higher values if adequate spatial
resolution of the boundary layer can be achieved.

Such numerical calculations do not avoid the need to introduce a length
scale in the horizontal direction since a finite horizontal dimension is required.
Another limitation of two-dimensional solutions is that they do not seem to
develop full turbulence. For reasons that are probably associated with this,
the two-dimensional results show very little dependence on ¢ and hence are
not directly useful to astrophysics except as a possible check on other theo-
retical approaches. Some o dependence may be introduced by allowing the
horizontal scale of motion to take its preferred value (Lipps & Somerville
1971), but the two-dimensional solutions have no way of determining this
scale.

An especially interesting aspect of the two-dimensional problem is that
asymptotic solutions for R—» have been obtained. These provide, apart
from the static solution without convection, the only accurate solutions of
the convection equations for large R. At large enough R, these are doubtless
unstable, but they are of theoretical interest. In addition to having the kind
of vertical structure in T already discussed, they have thin vertical ‘‘boun-
dary'’ layers as well. For example in a horizontal line in the plane of the mo-
tion, T will be constant except for sharp bumps at the edges of the two-
dimensional rolls. The vertical velocity is likewise concentrated in vertical
layers.

For o> R3/5 the result N« RY5 is obtained (Roberts 1969) and N « a5 for
a2 1 where a is the inverse horizontal scale that must be supplied to obtain
a solution. For o «R3/5, the result N ot R4 is obtained (Wesseling 1969) but
the ¢ dependence has not been given for this case. Also the corresponding
flow exhibits separation in cell corners and this probably indicates insta-
bility. These results (RY® and RY4) hold for rigid boundaries. For free
boundaries one finds N « RS with very little ¢ dependence (Roberts 1969).

The analytic and numerical results (Veronis 1966) coincide in their lack
of o dependence. As we have mentioned, this limits their astrophysical value
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to tests of other techniques of solution or in exploring qualitative problems
such as density variation. Itis, however, becoming increasingly reasonable to
think of solving three-dimensional problems even in the region of turbulent
convection (Orszag 1969). Though this may be premature for the astrophys-
ical case, itis a possibility that should be kept in mind in the coming decade.

8. MixinG-LENGTH THEORY

Most theories of convection consist of attempts to solve the basic equa-
tions in some approximation. Little effort has been made to bypass direct
solution by constructing models for the flow which may lead to simpler equa-
tions (though some very interesting models for time-dependent convection
exist (Chang 1957, Howard 1965, Keller 1966, Welander 1967, Elder 1968).
A notable exception to this remark is the mixing-length theory which pic-
tures turbulent transport processes in analogy with molecular processes
(Taylor 1970, Prandtl 1952). A characteristic mixing length /, analogous to
the mean free path of kinetic theory, and a characteristic turbulent velocity
u’, analogous to the mean molecular velocity, are introduced (e.g. Sutton
1955). Various formulations of the theory are possible, but the simplest is to
introduce a turbulent diffusivity, or Austasch coefficient, l»’, to be used to
describe the turbulent transport processes. This part of the theory is reason-
ably clear; the choice of  and #’ is more difficult. The random velocity #’ is
often taken to be of the order of some large-scale velocity in the fluid; in con-
vection this is the vertical velocity w. The mixing length is taken to be a
characteristic scale which is sometimes a constant such as the size of the sys-
tem. More usually it is assumed to be a local scale such as the distance to a
boundary or the scale of variation of a dynamically important quantity, such
as velocity, shear, pressure, or density. These choices imply a slight inconsis-
tency since the transport is described as a diffusion, using the approximation
that [ is less than any characteristic scale of motion (Spiegel 1963).

The equations describing the mixing-length model are just 1.4, 1.5, and
1.8 without the u -Vu and u V0 but with terms added to account for the
turbulent diffusion. In the simplest case, the same diffusion coefficient wl is
used for all quantities such as temperature and velocity, though it may be
more correct to consider different values of I for different quantities. This
is done in other problems such as vorticity diffusion (Goldstein 1938).

Even the relatively simple mixing-length equations are difficult to solve
and, in view of the drastic approximations involved already, perhaps the
effort needed to find exact solutions is not called for. Hence further mathe-
matical approximations are usually introduced. In oceanography, for ex-
ample, one often sets wl constant. In the astrophysical examples, one typi-
cally replaces most spatial derivatives of fluctuating quantities by I7?; for
example V2~I~2 (Kraichnan 1962). An equivalent way to obtain such results
is to be more explicit about the model itself and to picture the turbulent

transport as being effected by parcels of fluid of size I before disruption
(Vitense 1953, Spiegel 1971b).
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If we proceed by the expedient of writing ™! for derivatives, lump to-
gether terms that seem to be of comparable magnitude, and drop the pressure
and time derivatives, we can write by inspection from 1.4 and 1.5,

galb = v(Re 4+ 1)w 8.1
and
aT g
w|— + —) 12 = k(Pe + 1) 8.2
 C,
where
wl wl
Pe = —, Re = — 8.3
K v

These equations have been written here in dimensional form since that is
the usual practice in the literature, and are to be solved in connection with
1.8.

The dimensionless ratios Pe and Re are known as the Peclet and Reyn-
olds numbers and measure the ratio of turbulent diffusivity to the two
molecular diffusivities of the convection problem. Convection differs from
other turbulence problems in that no velocities are externally prescribed,
hence Pe and Re are derived rather than imposed quantities. It is possible
to make estimates for them if we take for w a characteristic free-fall time
through the fluid, namely

w~ [ga(AT — gd/Cp)d]'? 8.4
Then
R\1/2
Pe ~ (cR)1/?, Re~ <—) 8.5
ag

(These estimates provide a qualitative guide, and more precise values differ
with differing states of motion.) This shows that under astrophysical condi-
tions we expect convection to be turbulent since Re>>103, but that in stellar
envelopes where « may be large, turbulent transfer does not necessarily dom-
inate radiation transfer everywhere since (¢R)Y? is not always large.

A few further steps are needed to put these equations in the usual form
used by astrophysicists. We introduce @ '= T, which holds for a gas. Let

a6 i) —
6=1—=1—(T—-T) 8.6
a9z a9z

and take Re>>1 everywhere. Then the equations are readily rearranged into
the form used for stellar models with the notation I'=Pe (Vitense 1953).
There are some differences in numerical coefficients, such as those which
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arise when a more flexible approximation to the radiative diffusion term is
used. These matters aside, it is clear that the equations presently used for
stellar convection are essentially those used for laboratory convectionin the
mixing-length approximation.

Leaving for Part I1I the question of stellar application and related mod-
ifications of the theory, we may summarize the results indicated by the mix-
ing-length theory for laboratory convection (Kraichnan 1962). If careful
account is taken of the boundary-layer structure, the Nusselt number for
o large enough (¢>0.1) and R quite large becomes N~(R/1500)1/3, where
the constants in this and the succeeding results are estimated from a variety
of empirical data and theoretical calculations. For low ¢ (<0.1), N~(¢R/
70)1/3, where o R must be large (> 300).

An important feature of the standard mixing-length theory as described
here is that it includes the effect of small-scale motions only through their
damping of the large-scale motions. In turn, these large-scale motions are
driven only by differential buoyancy forces, and the mixing-length theory
chooses at each position a preferred scale of motion /. Near the boundaries,
! becomes small and at some distance from the boundary, a local Rayleigh
number computed with / instead of d is ~103. For distances to the wall less
than this, no motions can be strongly excited by the buoyancy, and conduc-
tion becomes the dominant mode of transport. Thisdistance thenis thethick-
ness of the thermal boundary layer which we saw in Section 3 is ~d/N.
Hence N is found by saying that the Rayleigh number computed for a scale
d/N is R/N? and this should be ~R,. From this we find N~(R/R,)'3. A
modification must be added in mixing-length theory since the diffusivities
entering into R may be turbulent diffusivities. In this model the thermal
boundary layer is the region in which molecular (or radiative) conduction
dominates over turbulent conduction. However, when the Prandtl number
is small the turbulent viscosity may be larger than the molecular viscosity
even in the thermal boundary. Hence, in general, the Rayleigh number of
the thermal boundary layer, R/ N3, should be corrected for turbulent viscos-
ity. That is, the Rayleigh number of the thermal boundary layer needs
a corrective factor »(v+wl)~* (Spiegel 1967) which is to be evaluated at
the edge of the boundary layer; at high Prandtl number this factor becomes
unity. If /is proportional to the distance from the boundary layer, we must
take J=d/N and in analogy to 8.4 we take w~[gaAT d/N]V/2 as the value
for the edge of the thermal layer. (In the laboratory case we may neglect
the correction for the adiabatic term gd/ NC,.) We find

oR/R, 1/3
NN['—‘— ] 8.7
o+ (cR/N3)1I2

More detailed arguments, allowing for geometrical factors, suggest that in
the denominator, R should be replaced by R/R.. We then find
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T Te — 17210 f o R\M3
;\..vm[\_/ﬁ_“___‘] (_) 8.8
20‘ Rc

as the mixing-length prediction for N. This has the limits mentioned; in
particular for low o, N~(¢R)Y3, which corresponds to the astrophysical no-
tion that heat transport should be independent of viscosity for low o. At
very large o, 8.8 indicates that the slight dependence of N on ¢ is not well
represented by a power law, but rather by a factor like (1—const ¢~ 1/2),

At large o, these mixing-length results agree reasonably well with ex-
periment, in the sense that the power 7 in 3.2 seems to be tending toward 1/3
experimentally. The lack of ¢ dependence for large o in the mixing-length
resultsis also not a bad representation of the data. For low o, data are avail-
able only for mercury and these are not adequate for a real test, but the data
foroRlarge do seem consistent with the mixing-length predictions. Attempts
to compare mixing-length predictions for T and 62 with experimental results
are qualitatively acceptable for large o but are unsatisfactory for mercury
(¢=0.025) (Rossby 1969). The values of (¢ R)!/2 studied experimentally for
mercury are, however, not very large and the disagreement may not be
wholly damning to the theory. This point needs further experimental scru-
tiny.

The standard mixing-length theory, as we have seen, considers the heat
transport by motions driven by differential buoyancy forces. The motions
which provide turbulent diffusivity are presumably dynamically excited by
the u -Vu terms in the equations of motion. The effect of these motions is
normally included only as a drain on the large-scale motions, but their con-
tribution to the convective transfer should also beincluded (Kraichnan 1962).
In theinterior of the fluid such corrections are unimportant since the gradient
is already nearly adiabatic, but they can be of greatimportancein the boun-
dary layer.

The reason for the frequent omission of such corrections is that standard
mixing-length theory asserts that at any location a specific scale of motion
! (normally =distance from the boundary) is dominant. Thus, the usual
mixing-length theory would not have predicted that large eddies from the
interior of the fluid strike the boundaries, and set up appreciable horizontal
motions there. There is, however, evidence that this occurs in laboratory
convection (Malkus 1954a) and it seems to be manifested on the Sun as
supergranulation (Noyes 1967; Simon & Weiss 1968). The neglect of the
transport at the boundary by these large-scale motions is justified normally
since they do not carry large temperature fluctuations, having traveled
mostly through nearly adiabatic regions. What cannot always be neglected
is the dynamical effect of these motions.

When large eddies hit the boundaries they set up shear layers which,
when they are intense enough, can break down into small-scale turbulent
motions. This turbulence may be less intense than the turbulence usually
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included in mixing-length theory, and it will not in general produce as large
an eddy conductivity. But if this turbulent conductivity exceeds the molec-
ular conductivity a marked change in boundary-layer thickness occurs. It
must be understood, however, that there is still a thermal boundary layer,
whose edge now is at the place where the large eddy conductivity of buoy-
ancy-driven turbulence is no longer important and the weaker conductivity
of shear turbulence takes over. This boundary layer is a turbulent boundary
layer which permits a greater heat transport than the laminar boundary
layer. The details of this layer depend on the boundary conditions and the
effect of the boundary-layer turbulence has been estimated only for the lab-
oratory case (Kraichnan 1962).

The procedure is to obtain the velocity shear at the wall by assuming a
simple model for the eddies arising from the interior. The intensity of the
resulting turbulence driven near the wall may be computed in analogy with
the results available from work on shear turbulence. Such mechanically
driven motions in the presence of a temperature gradient would transport
heat (Prandtl 1952) and, as in ordinary mixing-length theory, the additional
transport may be estimated. The details of the calculations are too lengthy
for inclusion here. They give, for sufficiently large R,

cR \12
in(2)
(91nR)?

when o is small. (A more complicated result for large o is obtained, but the
main factor in the expression for N in that caseis R/2.) Apart from the log-
arithmic term, 8.9 is in substantial agreement with 5.2.

A sensitive question is: when does 8.8 give way to 8.9 at small fixed o,
as R increases? Unfortunately, the estimates for this rely heavily on high
powers of badly known constants. It appears that for the case s~10~9, the
transition from 8.8 to 8.9 begins at R~10%, Thus, these corrections for
boundary-layer turbulence do not seem required under solar conditions.
Whether they may be required under any conditions in stars is an open
question since these turbulent corrections cannot be confirmed even for the
laboratory case with existing data. Nevertheless, such corrections may well
be needed for stellar convection (Spiegel 1971a) and the problem will be
further discussed in Part III.

Perhaps the most satisfying aspect of the calculations with boundary-
layer turbulence is that they permit a rationalization of the difference be-
tween 5.1 and 5.2. The suggestion is that for large R, 5.1 is a reasonable rep-
resentation until the large-scale motions become turbulent in the thermal
boundary layers associated with 5.1. The point at which this happens de-
pends on R in a moderately complicated way. Once the boundary-layer tur-
bulence starts, the heat transfer should then depend on d since it is an im-
portant factor in the large-scale interior velocities, as 8.4 indicates. Thus at
some enormous value of R the heat transport will depend on d and indeed
it is roughly found from J~uf where w is given by 7.4 and 6~AT.
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In this new regime, the flux no longer depends on «, except perhaps log-
arithmically. This comes about because what was previously a laminar
thermal layer becomes a turbulent layer and the role of molecular conductiv-
ity is taken up by turbulent conductivity. There may bein the new boundary
layer a small laminar sublayer which accounts for the logarithmic terms,
but without solid boundaries even the sublayer might disappear (Clauser
1961). Of course there are more details involved, particularly for ¢>1, but
the main qualitative features seem to be consistent with the dimensional
arguments.

9. TRUNCATED EXPANSIONS

A surprisingly effective approach to solving the equations of convection
is the use of truncated expansions in terms of an appropriate set of basis
functions or modes. Such a procedure is often called a Galerkin method (Reiss
1965) though the terminology used varies depending on whether the basis
functions depend on one or more of the independent variables. There exist
other related approximation methods, especially those relying on variational
approaches (Reiss 1965, Finlayson & Scriven 1966), which, in the convection
problem, have not proved as simple to use (Roberts 1966). In the Galerkin
and related methods one expands in functions of one or more of the inde-
pendent variables to obtain an infinite set of coupled equations for the am-
plitudes in the expansion. Expansion in functions of space and time, of only
space coordinates, and of only the vertical coordinates have been considered,
with varying degrees of success, depending on the choice and number of
basis functions, and the techniques used in solving the reduced equations.
The greatest effort, however, has gone into the use of basis functions depend-
ing on only the horizontal coordinates. Here too a wide choice of basis is
possible, but a promising set is comprised of the planform functions of linear
theory. Their relevance is reinforced by the theoretical suggestion that cell
shape is preserved even for R> R, (Stuart 1960). The planform functions
satisfy 2.3 and contain as a special case the trigonometric functions. They
have the useful property that for two different wavenumbers a; and a; the
corresponding solutions of 2.3, f; and f;, satisfy fif; =0. To each a; there cor-
responds a subspace of f5, and strictly we should add a second index to indi-
cate the various members of this subspace. But to keep the formulae simple,
we shall merely let f; represent the most general linear combination of basis
functions associated with a; where fi2=1. Then we can write the expansions
for w and 0

w(x, t) = Zfi(xt y)W-'(Z; t)r B(X, t) = Zfi(xJ J')E‘)i(Z, t) 9.1

with similar expansions for », v. Here, the index 7 is treated as discrete to
avoid the difficulty of infinite norm associated with a continuous spectrum.

The expansions may beintroduced into 1.4, 1.5, and 1.8 and the expanded
equations projected onto the appropriate f; in the usual way. The resulting
equations for the amplitudes in the expansions can be distilled into equations
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for W, ©s, and T. For simplicity we shall here suppress terms describing
vertical components of vorticity; these do not alter the general form of the
equations, which are (Gough, Spiegel & Toomre 1971),

[—1‘ 6, - (6,2 - 0‘2)] (6.2 b 0;2) W.'

1
= — Ra#0; — — X Ci#[WiLwd.W;+ W) MuisW;] 9.2

o ik
[0: — (8, — a?)]Os

= — (8.7‘ + g—) Wi— 2 Ci#*(Ap®0 Wi + (202a) Wid.9;) 9.3

» 7k
and
0T + D W,0; =9.T 9.4
J
where
9; = 9/9s, 9 = a/at
9k =ft'_f.?"f? 9.5
a; 2
L{;‘k = Aijk(832 - ark?'), Mi_fk == L;‘jk + (—) L_fk.' 9.6
. a
and
1
A,-J';G = "—2 (ng + G;;z - a,-”) 9.7
ay

The basic feature of these equations is that the amplitudes, or modes,
are coupled in two ways. There are the direct or dynamical couplings whose
strengths are mediated by the coupling constants C%*. These interactions
give rise to the disorder in the flow that is the hallmark of turbulence. The
other form of modal interaction, the so-called mean-field interaction, comes
from the term (8,7) W;in 9.3. In turn, 3,7 is given by 9.4, which shows how
T is affected by the motion. Thus all the modes may interact through the
mean temperature.

Consider now the most drastic truncation, in which only one mode is
retained. The resulting equations can be integrated numerically, and for a
wide range of parameters and initial conditions the solution tends to a sta-
tionary state. However, for a given choice of the parameters, there is not a
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unique stationary solution, there being nonlinear analogues of the funda-
mental and overtones (in 2) of linear theory. For the one-mode case, we shall
confine attention to the fundamental mode.

For one steady mode the nature of the solution depends on whether the
self-coupling constant, C'!'= C, vanishes or not. If f; contains at least three
Fourier components whose wavevectors form a triangle, we will have C0.
Evidently, for rolls or rectangles we will have C=0, and this case has been
studied extensively (Herring 1963, 1964, 1966). For R— « one finds (Rob-
erts 1966, Stewartson 1966)

al-{ B/5
;’Vl -~ 028 (1 - —}'{—) [RG12 In (RG12 -_ ﬂlﬁj]”ﬁ 9.8

for rigid boundaries and for a; <RY4. (For a> RY4 no convective solutions
exist.) As a function of a, this expression has a maximum at a1 max~(R/13)1/4,
and for most purposes we need consider only ¢; <@1masx- Hence to good ap-
proximation

N1 o A]_[R012 In (Ral2)]ll5 9.9

It is interesting that as in the two-dimensional problem, the boundary con-
ditions are very important; for free boundaries N« RY3 (Howard 1965, Her-
ring 1966).

For cases when C70 but a; <a1 max, expression 9.9 continues to hold for
R—x exceptthat A;is nolonger ~0.28 butis a function of C and ¢ (Gough,
Spiegel & Toomre 1971). The functional form of A: is not known analyti-
cally, but for C/od <1 we have A ~ [3/5(2/7)%] while for C/o > 1,
A#=3/5(2/%)tc/C. Thus, the introduction of the self-interaction terms
causes N; to depend on ¢R for small o.

Given these results we are left with the problem of choosing the a's and
C’s for one or more modes. Ideally, we would like to use the experiments as
a guide, but they do not directly provide scaleinformation at large R. Never-
theless it is possible to let a; and C be functions of R and ¢ and match the
observed N over a fairly wide domain of R and ¢ even with one mode. How-
ever, at @1 max =0 (RY4), N pax* R¥(In R)‘%, while for large enough R, the
actual N goes up like R® (or faster). Hence one mode can never describe the
full behavior of N. Further modes will be needed at very high R and no
experimental indication of which set of modes to choose is evident.

In the absence of stringent experimental guides, the choice of modes must
be dictated by additional assumptions. One that has been used is to maximize
N with respect to @ and C. For moderate values of R this gives much too
high a heat transport. Alternately, one might take over an idea that has
been preferred by many astrophysicists and choose that mode which is most
unstable according to linear theory. For large R, 5, the growth rate of linear
theory is maximum when a;< RY8 and this gives Nyx RY4 (In R)Ys, which is
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like the law suggested by some experiments for laminar convection at
moderate values of R(10%—10¢),

These two methods of selecting modes suggest that a; should increase
with R while in fact the experiments (at least for R < 10°) indicate a decrease
(Koschmieder 1969). Hence, perhaps the most reasonable procedure is to
take a; =0(1) and to represent the more rapid increase of N with R at large
R by adding further modes. Of course, this means that the choice of further
modes is left open as well, and one must seek an extension of this procedure.

The first possibility to consider when adding higher modes is to add to
the basic mode successively more of its horizontal harmonics to obtain an
accurate description of cellular motion. If, for example, we start with a roll,
fi=+/2 sin (ai1x), and its harmonics, we will have a Fourier representation
of nonlinear, two-dimensional cellular convection with horizontal perio-
dicity a;~t. We have seen that solutions of the two-dimensional problem for
o > R¥5 yield N «« RY5. Hence the addition of higher harmonics does not pro-
duce a drastic change in the heat transport calculated from one mode (at
least for rolls at high o) and thisimplies that the vertical structure of mean
quantities such as T as given by one mode is a reasonably close approxima-
tion to a solution of the full equations. (The agreement is even better for
free boundaries in which case one mode gives RY3.) On the other hand, the
horizontal structure implied by the one-mode approximation is generally not
atalllike that of the full two-dimensional solution, which suggests the exis-
tence of rising and descending plumes. Thus, the modal expansion may well
be useful for computing mean structures in a convection layer in spite of
its gross misrepresentation of the horizontal variations.

If, as is suggested by this comparison, the lower harmonics are not the
most important additional modes to introduce, which are? Presumably, the
rule used to choose the first mode should be used to choose successive modes.
Thus the second mode might be that which is most unstable according to
linear theory, based on the conditions existing with one mode. Or the second
wavenumber a; might be chosen to be of order unity in terms of the vertical-
length scale introduced by the first mode; this would imply a; =O(N;) since
the boundary layer has thickness d/N,. We should also note that once two
modes are retained, another option is open: the second mode may be used
as a perturbation to study the stability of the first mode. In principle this
may be a way to help select the preferred first mode, but in practice if the
nonlinear stability problem with two modes is studied, no clear choice is in-
dicated. We must therefore adapt one of the ad hoc selection procedures
and this is a weakness of the Galerkin procedure in convection. That the
difficulty becomes less serious as more modes are introduced may be seen by
estimating N,, the Nusselt number computed from = modes.

Consider first the case of only Fourier modes; these have C#i=0. Then
if we add more and more modes, solong as they are not harmonically related,
we would obtain an approximation to Equations 1.4-1.8 with the terms
u ‘Vu and u -V8—u VO neglected. The neglect of these terms is often called
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the mean-field or weak-coupling approximation (Spiegel 1967). It can be ex-
pected to hold only for very large ¢ as indicated by the agreement of the one-
mode roll solution and the two-dimensional theory. In that limit, the u -Vu
term is negligible, but there seems no obvious reason to omit u -Vf—u V8.
Of course, this term vanishes for one mode with C=0, and since the observed
motion is two-dimensional for large ¢ and R<10 R,, the approximation
should work well in that domain of parameter space. At higher R it should
continue to hold approximately since the term wd,7 acts qualitatively like
u ‘Vf. Part of the reason for this is that for T independent of time the sta-
tistically steady solutions of the mean-field equations must be stationary
(Spiegel 1962a).

To estimate the effect of higher modes we assume that a rule for choosing
the first mode has been adopted. In general, for large R, such a rule may be
expressed as a,=k1R*, where p <1/4 and %, may depend on ¢. (We might
also include a factor involving In R.) Then, for this mode, we have from 9.9,

Ny = AR*(ln R)' 9.10

where A2 A4(5ak:2)V5 and @ =1/5 (2u-1). For the second wavenumber let
us adopt the same prescription, based on the length unit d/N,; then a2=%ksN:
Res#, where the effective Rayleigh number Regs, seen by the second mode is,
crudely, ~R/N,3. Here an arbitrary factor of order unity should be included
to allow for the deviation from linearity of T in the boundary layer and for
the lack of a rigid boundary at the edge of the boundary layer. The ratio
kz/ky differs from unity for similar reasons. Let us ignore such corrections
and take Rest=R/N:® and ky=E1. Then the effect of the second mode is to
increase N by an approximate factor A4 Reg®(In Regt)/® and for the two modes,
the product of this factor with N, gives

Ny = A% %] — 3a)V6RZ 3 (]n R)1E0-2) 9.11
. . . /
We may readily extend this procedure to # modes_with_the.result
N,=(1-— 3a)n/(15a){Alla(1 — 3a)—1/(15a2)(ln R)l/(Ea)R}[l—(l—aa)nlla 9.12

We see that as # isincreased, the chief feature of the limiting N is a vari-
ation like R!3, except for logarithmic factors, and that this behavior does
not depend on a. However, for fixed R, N, tends to zero as = tends to infinity,
which shows that some cutoff must occur if the result is to be meaningful.
That such a cutoff exists is shown by numerical solutions which indicate
that if a, is too large, the nth mode will not develop a detectable amplitude.
The numerical results are consistent with the criterion that Rest= R/ Nyn3~R,
for the cutoff n. This criterion not only permits us to estimate #~-In In
R/In (1-3e), but it also shows that N~(R/R.)"?, irrespective of the details
of the theory (Malkus 1954b). Another approach, in the case where one
wishes to maximize N, is to choose # to maximize N, for fixed R (Chan 1971).
Curiously, this procedure gives the same cutoff for large R, so that for the



Annu. Rev. Astron. Astrophys. 1971.9:323-352. Downloaded from www.annualreviews.org
Access provided by Uni}'versity of California- San Diego on 02/03/17. For personal use only.

348 SPIEGEL

mean-field approximation Npax < R18. For the case of maximum N, accurate
asymptotic solutions of the mean-field equations have recently been con-
structed (Chan 1970).

The recovery of the R/3 law is an encouraging result, and the lack of ¢
dependence is not surprising since the mean-field equations should hold only
at large ¢. We must now consider more general modes with C#0. These do
introduce a ¢ dependence. If we proceed again with the introduction of a
sequence of modes of higher and higher wavenumber, we will again come to
the result 9.12 as long as the modes are not harmonically related so that
their mutual coupling constants vanish. This time 4 will depend on ¢ in a
way that depends on our choice of wavenumbers. If at small & we expect to
have N depend on Re we must choose &, so that at small o it varies like o*.
In that case, we shall find that N« (Ro)!3 for large Ro and for any p<1/4.
Thus the truncation procedure gives us the same kind of result for heat
transport as standard mixing-length theory. Its advantage over mixing-
length theory is that it can accommodate variable density, time dependence,
and many of the other features of the problem that must be dealt with in
stellar convection. Many of these complications have already been studied
and will be discussed in Part II.

Now we must ask: what happens when we deal with dynamically coupled
modes in the truncation theory? In particular, do the dynamical couplings
excite modes that would not have been excited by mean-field terms and do
these excitations lead for example to an (Ro)!/? law at large Ra? The question
has not yet been answered. Numerical solutions for R up to 10° with three
dynamically coupled modes have been found. These do seem to indicate the
possibility of dynamical excitation. They also introduce complicated time de-
pendence into the solution (Toomre 1969). However, the value of R(=109)
achieved to date is not high enough to show a tendency to deviate from an
R3 law; indeed at that value of R the law is still being approached as R

--——_.___increases.

T Onedificulty with-going to higher R is that if we seek steady solutions,
thereisatany R and ¢ for a given set of wavenumbers and coupling constants
a great wealth of solutions and it is not clear which solution branch to follow.
It is just too demanding of computing time to follow them all. On the other
hand, even if the difficulty of choice can be alleviated by computing time-
dependent solutions, the computing bill also mounts up quickly because of
the long transients. The time-dependent problem is reminiscent of computa-
tions in stellar pulsation in having one space and one time dimension; how-
ever, for three modes we must deal with a system of 20th order in the spatial
derivatives. The problem can be done with existing machines, but it is dif-
ficult. It may well be possible to extract the main results for dynamically
coupled modes analytically as has been done for the modes with only self-
coupling and mean-field interactions. This problem has not been attempted
and it is clearly of great analytical complexity.

An alternate procedure is to keep just a few (one to three) modes and add



Annu. Rev. Astron. Astrophys. 1971.9:323-352. Downloaded from www.annualreviews.org
Access provided by University of California- San Diego on 02/03/17. For personal use only.

CONVECTION IN STARS 349

terms based on turbulence theory (crude or refined). This would permit a
reasonably accurate handling of many of the features of stellar convection.

10. TurBULENCE THEORIES

The development of the statistical theory of turbulence has been pro-
ceeding quite rapidly, the recent developments being largely dominated by
improved approximationsfor highly turbulent flows (Kraichnan 1970, Orszag
1970, Saffman 1968). The approximation techniques are usually developed in
terms of turbulent spectra and produce equations, which, though much easier
to solve than the original equations of motion, pose great calculational diffi-
culties. In particular, one such approximation scheme, the direct interaction,
has been applied to the Boussinesq equations for convection (Kraichnan
1964). The numerical solution of these equations has recently been accom-
plished for the case of free boundaries with R <104and o = « (Herring 1969).
Remarkably enough the solutions are almost identical to those obtained for
the mean-field equations with one mode. The extension of these solutions to
higher R andlower ¢ is difficult, but feasible, and it will be of greatinterest to
see how far such extensions can be carried. It should be stressed that this ap-
proach leaves no arbitrary parameters.

The use of approximations from turbulence theory has also been applied
to the case of very low ¢ with rather bewildering results: the solutions grow
in amplitude without limit (Herring 1970). This may be a peculiarity of the
free-boundary conditions used in connection with a particular limiting form
of the Boussinesq equations for low ¢ (Spiegel 1962b), but the matter has
yet to be resolved.

There has also been a renaissance of phenomenological theories, many
of which are more sophisticated than the standard mixing-length theory
(Crow 1968, Lumley 1970, Nee & Kovasznay 1969, Parker 1969, Saffman
1970). The term phenomenological is sometimes used pejoratively in turbu-
lence theory; here it is not. It simply implies that the approach used is not
intended to be completely deductive and is based to varying degrees on some
physical picture of the inner workings of turbulence. Nor does it follow that
the equations in a phenomenological approach are easy to solve, though
usually they are easier to solve than the full equations. The disadvantage of
these theories for astrophysical purposes is that, like mixing-length theory,
they normally contain disposable parameters. Values for these parameters
determined in the laboratory may not be applicable to stars. But this is a
question to be faced when these new approaches are applied to convection;
for the present they simply represent a trend of which the astrophysicist
need only be aware.

11. CoNcrLusiON

Not everyone who works on convection would agree with the assessments
made of the various approaches discussed here. But the discussion as given
does seem to bring out certain conclusions and these are:
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1. The mixing-length theory, for all the criticisms leveled at it, has been
qualitatively successful in predicting convective heat transfer. The form
used for stellar convection however seems to be incomplete for very strong
convection, and additional ingredients will be suggested in Part III. In any
case it is difficult to use the theory for many special effects of astrophysical
interest.

2. The procedure of maximizing the heat transfer is quite promising and
gives Euler equations that seem to represent the flow qualitatively. Hitherto,
these Euler equations have not contained dynamical couplings and this is
the key to their tractability. If constraints could be added to the maximi-
zation problem which bring out the Prandtl-number dependence, the method
will have great promise for stellar convection. Whether this can be done
without enormous complications in the Euler equations remains to be seen.

3. The truncated modal expansions provide a reasonably accurate and
flexible approach to the problem. They can readily accommodate large den-
sity variation, time dependence, and other difficulties of the stellar case. As
yet, for more than one mode, they must be solved numerically, if the dynami-
cal couplings are to be treated with acceptable accuracy. Whether these
couplings will adequately describe boundary-layer turbulence remains moot.
To settle this it may yet be necessary to further approximate the dynamical
couplings.

4. The statistical theories of turbulence are beginning to provide divi-
dends and will certainly give answers in the nextfew years. Theseresultsare
awaited eagerly although they will oblige interested parties to master this
very difficult discipline. .
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